
Leading in Complexity

Requirements at Intel
Distance Learning – Short Course
Version 9.2
October 2020

sarah.c.gregory@intel.com

2

Licensing

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

2

Licensed under Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

You are free to:

Share — copy and redistribute the material in any medium or format

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any
reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything
the license permits.

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an
applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights
such as publicity, privacy, or moral rights may limit how you use the material.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

OpenRE – Notes about this course

▪ Intel Corporation has a robust internal curriculum of Systems and
Requirements Engineering training and education materials.

▪Most training has been delivered F2F. Distance Learning options
have existed since ~2012, but COVID accelerated the need to make
more distance sessions available.

▪ In 2021, we are exploring development of web-based versions of
lecture content to enable instructors to better scale across the
company for hands-on coaching.

▪ In 2021, we also plan to establish IREB Foundation Level RE
Certification as an expectation for business unit RE leads. We will
develop, pilot, and deploy an internal IREB-compliant class.

4

Welcome! What this class is NOT:

A heuristic is anything that provides a plausible aid or direction in the solution of a problem.

1. Tool training: The training is intentionally tool-agnostic. The practices
are relevant and beneficial regardless of any tool(s) used.

2. A prescriptive “how to” job aid: You’ll learn many good practices to
add to your toolkit, but you won’t be told how to be a Requirements
Engineer. Task-relevant experience is required.

3. A Rulebook for “how to do requirements” for any business unit,
product, project, or program – the course teaches heuristics.

4. A prep class for the IREB® CPRE™ Foundation Level certification exam.
(ETA for this – Q2’2021)

* For intact team training, your instructor may discuss the rules that your particular team or
business unit has chosen to follow, but will distinguish those from general RE heuristics.

5

• Introduction

• Detail Level and Timing Issues

• Common Problems with Natural Language

• Specification Basics

• Specifying Functional Requirements and Constraints

• Specifying Quality and Performance Requirements

• Additional Specification Techniques

• Requirements Quality Overview

• Requirements Management Overview

• Sources for More Information

Contents

6

Objectives

6

• Identify the most common problems with natural language requirements

• Understand several fundamental best practices in requirements specification.

• Write functional requirements and constraints using a simple syntax

• Write quantified, unambiguous quality and performance requirements

•Describe additional techniques besides natural language that can be used to
specify requirements.

• Describe objective and subjective techniques to assess requirements quality

• Describe key practices in Requirements Management, and how they’re enabled

• Know where to find more information on the topics presented

Upon completing this course, you should be able to:

7Intel Confidential

Introduction
Requirements Engineering – an Engineering Discipline

8

Coming to Terms

8

Systems Engineering

Requirements Engineering

Requirements
Management

- Maintaining the integrity
and accuracy of the

requirements

Gathering
Requirements
from Stakeholders

Assessing,
negotiating and
ensuring correctness
of requirements

Creating the written
requirements

Assessing
requirements for
quality

9

1. Functional Requirement: A result or behavior that shall be provided
by a function of a system, including requirements for data or the
interaction of a system with its context.
(“What the system must do”)

2. Quality Requirement: A statement of a quality concern such as
performance, availability, security, reliability, and usability, not
covered by Functional Requirements. (“How well the system does
what it does”)

3. Design Constraint: A statement that limits the solution space beyond
what is necessary for meeting given functional, quality, and
performance requirements (“What the system must be”)

What is a Requirement?

A requirement is one of the following:

Source: International Requirements Engineering Board
(IREB) – CPRE Foundation Level Syllabus

10

The Purpose of Requirements
Requirements help establish a clear, common, and coherent
understanding of what the system must accomplish.

Well written requirements increase the probability that we will
release a successful system (low defect, high quality, on time)

Clear: All statements
are unambiguous,
complete, and
concise

Common: All
stakeholders share
the same
understanding

Coherent: All
statements are
consistent and form
a logical whole

Requirements are the foundation upon which systems are built.

11

Ways to Specify Requirements

Natural Language: Use of English as a means of specifying requirements

Diagrams and Models: Visual specification using formats such as state models,
informal diagrams, and components of the Unified Modeling Language

Lightweight Formal Methods: Specification using defined objects and states in
semi-formal notation, including full use of UML

Formal Methods: Mathematically-precise specification using rigid syntax,
semantics, and theorem proving, can include SysML models

Natural language and formal methods are endpoints of a spectrum of formality.
Use the methods that are appropriate for your project or program.

12

Unconstrained natural language
The display should go off when the user has the phone by her face during a call.

Constrained natural language
While a CDMA or VoLTE call is active, when the device senses the user’s face in
proximity to the display, the device shall turn off the display.

Lightweight formal methods
While (_CDMACall_ or _VoLTECall_) and _faceProximity; _devDisplayOff_

Formal specification
 callCDMA: CDMA Call, callVoLTE: Voice over LTE Call, dev: Device, face: Face
(Active(call.CDMA)  Active(call.VoLTE))  At(dev, face) → dev.Display = ‘off’ W (⌐ At(dev,
face))

Example: The Specification Spectrum

13

13

The Right Tool for the Job

There is no single “right way” to do Requirements Engineering – not at Intel,
not in industry.

Some projects are well-suited for Agile methods with minimal
documentation, while others may require formal specification methods,
including models. Many will be in-between these endpoints.

This class focuses on Constrained Natural Language (CNL) as a foundational
practice for Requirements Engineering. Regardless of other methods used,
CNL is a valuable skill to have in one’s repertoire.

On many projects, additional specification techniques, including Model
Based Systems Engineering (MBSE) or mathematics-based specification
languages, may be helpful or even necessary, but CNL will be applicable as
well.

14

A requirement is a statement of something a system must do, how well it
must do what it does, or a constraint that must be met.

The purpose of requirements is to help ensure a clear, common, and
coherent understanding of the system among stakeholders.

Requirements Engineering consists of five activities: elicitation, analysis &
validation, specification, verification, and management.

Requirements can be specified using many different formats that span a
range of formality, rigor, and ease of reading.

No single “right way” exists to do Requirements Engineering. Constrained
Natural Language, a foundational technique for this class, is useful across a
wide spectrum of products and programs.

Section Summary

15Intel Confidential

Detail Level and Timing Issues
When to Specify What Gets Specified

16

How Much Detail is Enough?
The correct detail level, like the correct investment in requirements
activities overall, must balance risk and investment:

Too much
risk

Too much
investment

Less detail More detail

Acceptable risk and
investment

The acceptable risk-investment region depends on several different factors.

17

The correct level of detail in requirements depends on factors that include:

• Precedented vs. unprecedented product or feature

• Development team experience, size, and distribution

• Acceptable risk level during development

• Domain, organizational, and technical complexity

• Solution, Platform, Component, Subcomponent, or other hierarchy

• Product Line Engineering considerations (reuse)

• Need for regulatory compliance

• Current location in the life cycle

Requirements completeness is judged continually, based on the changing needs
of the project and team.

How Much Detail is Enough?

Requirements must guide the current activities of all team members at an acceptable risk level.

18

No requirements specification is ever truly complete.

There isn’t enough time (or resource) available to write them all – and you
shouldn’t have to anyway…

Provide detail where it’s needed most: risky, unprecedented, not previously
specified, or complex areas.

Writing thousands of requirements may feel like productivity, but:

• If what gets documented is what everyone already understood, what is the
effect on project risk?

• Large specifications can lead to a false sense of security.

How Much Detail is Enough?

Make a conscious decision on WHAT not to write

19

1. Start by generating requirements that define the known scope of
the system, but at minimum depth.

2. Decide what not to write.

3. Decide when to write what you will write

4. Create the necessary details at the right time, always using
business value and risk reduction as guides.

5. Revisit steps 1-4 often based on what you learn as you make
progress and the requirements evolve.

A Flexible Approach to Scope and Details
Regardless of what type of system you are building, use an evolutionary
approach to requirements engineering :

Make a conscious decision on WHEN to write what you do write

20

20

Requirements vs. Design
“Requirements are the what, design is the how…”

This is true – to a point, but the main difference between requirement and
design is one of perspective:

How you look at a statement dictates whether it is a requirement or a design.

Build and
enable

autonomous
vehicles

Executive
management:

“A design to meet
financial goals”

Product
development:

“My requirements
for this year”

21

Requirements vs. Design

Many products carry the majority of their design specifications forward
from previous versions as constraints on current requirements.

Therefore,

It’s not whether a statement is a “requirement” or a “design” that
matters, but whether the statement places appropriate constraints
on the people that will read it.

If the system must be or act a certain way, say so… If not, leave the people
downstream as much freedom as possible to do their jobs

22

The correct level of detail is a matter of balancing cost and risk.

Many factors influence the choice of how much detail is enough, including
attributes of both the team and the product.

Make a conscious decision up front on what not to write.

Make a conscious decision up front on when to write what you must write.

Use an iterative, incremental, learning-based approach to requirements
specification.

It is not whether a statement is a “requirement” or “design” that matters, but
whether it places appropriate constraints on those that use it to guide their work.

There is nothing intrinsically incompatible between good requirements
engineering and agile development practices.

Section Summary

23Intel Confidential

Common Problems
with Natural Language
Specifying What We Mean, Meaning What We Specify

24

While useful in everyday interactions, natural language is fertile
ground for a number of problems related to requirements, including:

• Weak words

• Unbounded lists

• Implicit collections

• Issues around verb choice and semantics

• Poor or complicated grammar

Let’s examine each of these to see how they cause problems…

Common Problems with Natural Language

25

25

Discussion – Fun with Ambiguity

1. Mary had a little lamb.

2. No one has seen a pig with a magnifying glass.

3. All engineers prefer a working prototype to a theory.

4. Shut down the pumps if the water level remains above 100 meters for more
than 4 seconds.

5. When we finally reached the bank, we were impressed with how green it was.

Analyze the following sentences for ambiguity. What possible
meanings can you find?

26

Weak Words
Weak words are subjective or lack precise meaning.

Don’t use weak words – define what you mean using precise, measurable terms

• Quickly

• Easy

• Timely

• Before, after

• User-friendly

• Effective

• As possible

• Appropriate

• Normal, usual, regular

• Support, Capability

• Reliable

• State-of-the-art

And many more…

27

The use of “Support”

“Support” is both one of the most common weak words used in
requirements specifications, and potentially adds the greatest risk.

• Level of completeness is generally undefined – what is enough “support”?

• Requirements that include “support” are often not verifiable as written.

• “Support” is presumptively a failure of the Unambiguous item on the Good
Requirements Checklist; all review tools will flag the word as an issue.

• With practice, alternatives to “support” are easier to identify and use.

• Exceptions to its ambiguity exist, primarily in structural engineering.

Do requirements containing “support” need to be rewritten?
Risk vs. Reward: Assess carefully, and choose wisely!

28

Discussion – The use of “Support”

While use of “support” in requirements cannot be completely avoided, it is often
used when other terms would be preferable.

Analyze the following uses of the term “support” - how are they different?

What terms might be substituted to improve clarity and reduce ambiguity?

1. The system shall support 802.11n.

2. The system shall support Windows* 10.

3. The system shall support 250 concurrent users.

4. The system shall support a static load of 4 metric tons.

*Third-party brands and trademarks are the property of their respective owners.

29

An Unbounded List is one that lacks a starting point, an ending point, or
both.

Classic examples include:

• At least

• Including, but not limited to

• Or later

• Such as

• Etc.

For example, how would you design and test a system that “must support at
least 250 users”?

Unbounded Lists

Unbounded lists are impossible to design for or to test against

30

An Implicit Collection is a collection of objects within requirements
that are not explicitly defined anywhere.

Without a definition, readers may assume an incorrect meaning.

Example:

“The software must support 802.11 and other network protocols supported
by competing applications under Linux.”

•What is counted as a “competing application”?

•What belongs to the collection of “other network protocols”?

•What specific protocols of 802.11 are included?

• “Linux” is also a collection of OS vendors, versions, and revision levels

Implicit Collections

31

The word “and” in a requirement statement may signal an error:

A qualifier before a phrase with “and” can result in conflicting interpretations of a requirement:
“authorized nurses and doctors”

“And” may indicate the presence of more than one requirement:

• The tool shall identify and prioritize functional safety requirements.

“And” is acceptable in a few circumstances:

• When sensor detects water level below the measurement midpoint, water management system shall
simultaneously pause the pump and open the water tap.

The Trouble with “And”

The presence of more than one verb in a requirement is a strong indicator – but not an absolute rule -
that “AND” signals more than one requirement.

32

32

Other Common Issues
Be careful with verb choice

• Systems shall manage, enable, allow, support, ensure, permit, assist, provide the
capability to…

Be careful with each, all, every, and only

• How is “each user” different from “all users”?

• The placement of “only” can completely change the meaning of a sentence

Avoid grammatical issues

• “The system shall report/log improper access attempts and notify administrators if a
user does not respond to warning messages or lock out the account.”

33

Section Summary
Natural language is prone to ambiguity.

Weak words leave the interpretation of the requirement open to each
individual.

Unbounded lists make it impossible to adequately design for and test a
requirement.

Implicit collections create multiple interpretations of group membership.

Poor grammar, complicated sentence structure, semantic issues, and other
language use issues also cause requirements problems.

34

Exercise 1
Identifying Issues with Natural Language

Instructions: Assess a sample of product usability requirements.

Locate weak words, unbounded lists, implicit collections and other
problems in the natural language of the sample.

Identify and categorize the errors that you see.

BONUS – can you identify the product from which this exercise was
drawn? ☺

Skill Developed: Reinforce the ability to spot issues with natural
language while reviewing requirements

35

35

Exercise 1
“The usability objective of the Broadcast Plus client is to be usable by the intended
customer at a 5’ distance. The client should be an integrated system that is both
reliable and responsive. Reliability and responsiveness are more critical for this device
than for PC desktop systems. Reliability should be as good as that of consumer home
entertainment devices (e.g., TV or VCR) and response to user interaction should be
immediate.

The applications should provide an easy-to-learn, easy-to-use, and friendly user
interface, even more so than PC desktop applications. Users should be able to start
using the application immediately after installation. Users should be able to
satisfactorily use the device with little instruction.

Friendly means being engaging, encouraging, and supportive in use. Users must feel
comfortable with the client and must not be given reason to worry about accidentally
initiating a destructive event, getting locked into some procedure, or making an error.
Feedback for interactions should be immediate, obvious, and appropriate.”

“The usability objective of the Broadcast Plus client is to be usable by the intended
customer at a 5’ distance. The client should be an integrated system that is both
reliable and responsive. Reliability and responsiveness are more critical for this device
than for PC desktop systems. Reliability should be as good as that of consumer home
entertainment devices (e.g., TV or VCR) and response to user interaction should be
immediate.

The applications should provide an easy-to-learn, easy-to-use, and friendly user
interface, even more so than PC desktop applications. Users should be able to start
using the application immediately after installation. Users should be able to
satisfactorily use the device with little instruction.

Friendly means being engaging, encouraging, and supportive in use. Users must feel
comfortable with the client and must not be given reason to worry about accidentally
initiating a destructive event, getting locked into some procedure, or making an error.
Feedback for interactions should be immediate, obvious, and appropriate.”

36Intel Confidential

End of Distance Learning Session #1

Systems and Requirements Engineering

Requirements Specification
Distance Learning Session #2
Version 9.2
October 2020

sarah.c.gregory@intel.com

38

• Introduction

• Detail Level and Timing Issues

• Common Problems with Natural Language

• Specification Basics

• Specifying Functional Requirements and Constraints

• Specifying Quality and Performance Requirements

• Additional Specification Techniques (TBD)

• Requirements Quality Overview*

• Requirements Management Overview*

• Sources for More Information

Contents

39

Objectives

39

• Identify the most common problems with natural language requirements

• Understand several fundamental best practices in requirements specification.

• Write functional requirements and constraints using a simple syntax

• Write quantified, unambiguous quality and performance requirements

•Describe additional techniques besides natural language that can be used to
specify requirements. (TBD)

• Describe objective and subjective techniques to assess requirements quality

• Understand key concepts and capabilities needed for requirements
management

• Know where to find more information on the topics presented

Upon completing this course, you should be able to:

40Intel Confidential

Beginning Distance Learning Session #2

41Intel Confidential

Specification Basics
“Requirements 101”

42

These basic practices have a high return on investment:

•Use a template for requirements specification (present in RM/SE tools).

•Move from unconstrained natural language to constrained natural language
to reduce ambiguity and improve completeness with minimal effort.

•Do not include design statements in the requirements unless they are there
as intentionally-imposed constraints.

•Supplement natural language where needed with other representations to
improve comprehension and reduce ambiguity.

•Write requirements for reuse to create known-good datasets.

Specification Basics

43

•Quantify qualitative requirements so they are verifiable.

•Define terms in a glossary with an accessible location to ensure accurate use
across projects and product lines. (Use standards-based terms where
applicable and available.)

•Validate requirements with stakeholders frequently as a test of
understanding.

•Rigorously verify requirements to prevent defects and maximize
requirements quality.

• Make reviews and approvals of requirements essential lifecycle milestone
steps

Specification Basics

44

Using Imperatives

Use Shall or Must to indicate requirements.

Should and May are not used for requirements, but to specify
design goals or options that will not be validated.

Will and Responsible for are not used for requirements, but may be
used to refer to external systems or subsystems for informational
purposes.

Imperatives are an example of Constrained Natural Language. We restrict the definition of
these words in order to achieve shared understanding of their meaning.

45

Using Imperatives

Examples:

• The system shall conform to ISO 14825:2011, Intelligent transport
systems - Geographic Data Files (GDF) - GDF5.0

• Design Goal: The data cache should occupy as little memory as
possible, and may use lossless compression to achieve this

• Note: Accurate _accountBalance_ for the user’s accounts will be
supplied by the _hostFinancialInstitution_ systems. The ATM is not
responsible for validating the reported _accountBalance_

46

NO: “Users shall not be prevented from deleting data they have entered”

YES: “The system shall allow users to delete data they have entered”

Negative Specification
It is appropriate to state what the system shall not do, but keep in mind
that the system shall not do much more than it shall do.

• Use negative specification sparingly, for emphasis.

• Don’t use negative specification for requirements that could be
stated in the positive.

• Avoid double negatives altogether.

47

1. The system shall not support Windows* 8.

2. There is no requirement to support Windows 8.

3. The system shall support Windows 10, all service packs and revisions

Discussion – Negative vs. Non-specification
Compare the requirements below. How would each guide the work of those that
read it to implement a software installer?

What similarities and differences can you find between negative specification and
non-specification?

Be prepared to share your insights with the class at the end of the discussion

*Third-party brands and trademarks are the property of their respective owners.

48

• Complete: A requirement is complete when it contains sufficient detail for those that
use it to guide their work at an acceptable level of risk.

• Correct: A requirement is correct when it is error-free.

• Concise: A requirement is concise when it contains just the necessary information,
expressed in as few words as possible.

• Feasible: A requirement is feasible if there is at least one design and implementation
for it.

• Necessary: A requirement is necessary when it:

• Is included to be market competitive

• Can be traced to a regulatory, stakeholder, or approved customer need

• Establishes a new strategic differentiator or usage model

• Is dictated by business strategy, roadmaps, or sustainability

Good Requirements Checklist (1 of 2)

49

• Prioritized: A requirement is prioritized when it is ranked or ordered according to its
importance.

• Unambiguous: A requirement is unambiguous when it possesses a single
interpretation.

• Verifiable: A requirement is verifiable if it can be proved that the requirement was
correctly implemented.

• Consistent: A requirement is consistent when it does not conflict with any other
requirements at any level.

• Traceable: A requirement is traceable if it is uniquely and persistently labeled with
an individual ID.

Good Requirements Checklist (2 of 2)

50

NLP tools are in the Intel environment and are accessible to authors and
reviewers of requirements to help with quality improvements.

Used early in requirement authoring, these tools can provide an author with
areas where their requirements skills can be improved.

Used during the requirements creation process, these tools can provide early
indicators of requirements written by untrained authors, which thus may contain
many defects.

Used prior to peer reviews or inspections, these tools can determine whether the
requirements are of sufficient quality to spend person hours on detailed
analysis.

A separate one-hour training and license purchase may be required to use these
tools

Natural Language Processing (NLP):

51

Guidance for the Good Requirements Checklist

Remember – this course teaches heuristics, not rules.

• Apply the GRC checklist heuristics carefully, as learning aids, not just
boxes to check.

• Focus on the checklist as a means of requirements defect
prevention, rather than just as a tool to identify and remove
requirements defects.

• Metrics based on the checklist may be helpful, but not sufficient.
Subjective requirements quality assessment matters at least as much
as objective defect data.

52

52

Section Summary

Several basic requirements practices have a high return on a relatively small
investment; start using those practices soon if you are not doing so already.

Shall and must are the proper imperatives for a requirement statement – don’t
use should and may.

Use negative specification sparingly, for emphasis.

There are 10 Attributes of a Good Requirement that must be met – for
individual requirements, collections of requirements, and the overall
specification(s).

Natural Language Processing (NLP) requirements evaluation tools can
potentially add value by identifying some issues, but use with caution.

53Intel Confidential

Specifying Functional Requirements &
Design Constraints
Constrained Natural Language
“What Shall the System Do? What Shall the System Be?”

54

Functional requirements and constraints are measured on a Boolean
(yes/no) scale – they are either present or absent in the system.

Functional requirements and constraints are captured with a single
imperative statement containing “shall” or “must”.

Examples:

The system shall permit the user to create playlists of songs.

The system must comply with ISO 26262-1:2018 Road Vehicles –
Functional Safety.

Functional Requirements and Constraints

55

Easy Approach to Requirements Syntax (EARS)*

55

Pattern Name Pattern

Ubiquitous The <system|actor> shall <action> <object>.

Event-Driven When <trigger> <optional precondition>, the <system|actor> shall
<action> <object>

State-Driven While <system state|actor state>, the <system|actor> shall <action>
<object>

Unwanted
Behavior

If <unwanted state|unwanted event>, then the <system|actor> shall
<action> <object>

Optional
Feature

Where <feature is included>, the <system|actor> shall <action>
<object>

Compound (combinations of the above patterns, usually “while” with “when” or
“if/then”)

The Easy Approach to Requirements Syntax (EARS) consists of a set of patterns for specific types of functional requirements and constraints.
The EARS syntax is used with kind permission of Alistair Mavin and Phil Wilkerson, and the RE Methods Group of Rolls Royce, PLC.

56

The user interface shall conform to Intel branding guidelines.

When a user commands installation of an _application_ that accesses
communicationsFunctions, the system shall prompt the user to acknowledge
the access and agree before continuing installation.

While the _phoneFunction_ is active and _speakerMode_ is off, when the system
detects the user’s face in _proximity_ to the display, the system shall turn off the
display and deactivate the display’s touch sensitivity.

While in _standby_, if the battery capacity falls below _lowBatteryThreshold_
remaining, then the system shall change the _systemLED_ to flashing red.

Where the system contains two SIM cards, the system shall allow the user to
assign a default network to each contact in the address book.

Examples of EARS Syntax

57

About Ubiquitous Requirements

Question ubiquitous requirements: Things that seem universal are often subject
to unstated triggers or preconditions

Most legitimate ubiquitous requirements state a fundamental property of the
system

• The system shall meet RoHS standards

• The system case shall be available in both matte and gloss finishes

System functions that appear ubiquitous are often not

• The system shall warn the user of a low battery

58

Requirements Completeness

It takes much more than a single imperative sentence to satisfy all 10
Attributes of a Good Requirement for a single statement.

Other evidence can be provided through structural data model elements, or
textual adds to the specification of the statement or collection of
requirements.

For example, a defined link from a requirement to an approved higher-
level statement that it Satisfies is presumptive evidence of Necessity.

Necessity can also be demonstrated by a “Rationale” attribute (“field”)
attached to a requirement.

Structural arrangements of requirements may reasonably differ under different
circumstances (product type, business unit, database functionality vs. Word/Excel, etc.)

but strive to meet the intent of the Good Requirements Checklist items.

59

Name A short, descriptive name

Requirement The requirement statement itself, in EARS format

Intel
Classification

Classification of the requirement according to Intel
information security guidelines (Intel Confidential / Intel
Top Secret)

Notes Any explanatory or informational comments

Essential Requirements Information
Every requirement needs to include key infomation

The items below represent the minimum list of attributes (“fields”) for
any individual requirement statement:

60

Complete All attributes (“fields”) are complete; review by Consumer(s)
indicates that sufficient information is present

Correct Technical accuracy; Producer of source content reviews and
indicates correctness.

Concise Requirement contains only one independent idea, defined
and tested as a whole

Feasible Review and Approval indicates requirement can be
completed on the project with available time and resource

Necessary Traceability to the content that requirement Satisfies – or –
Statement of necessity (“Rationale” or “Motivation”) in an
attribute or field.

How to Demonstrate “Goodness”

61

Prioritized Inclusion in a baselined dataset - OR -
Attribute or Field with “Priority” defined

Unambiguous Cross-functional review or inspection indicates objective
lack of ambiguity, agreement on content of requirement

Verifiable Unambiguous; Test team member of cross-functional
team approves requirement as testable as written

Consistent Traceability and review or inspection identifies no
conflicting requirements or gaps

Traceable Unique and persistent ID; bidirectional traceability
enabled for content prior to its relevant lifecycle
milestone

How to Demonstrate “Goodness”

62

“Housekeeping” details for Any Requirement

62

Created By The person who first authored or entered the requirement

Creation Date The date the requirement was first authored or entered

Modified By The person who modified this requirement

Modified Date The date the requirement was modified

ID A unique, persistent identifier for the requirement

And some useful non-keyword devices:

< > “Fuzzy brackets” used to mark terms requiring more details

abcde Dual underscores to denote use of a _definedTerm_

63

Metadata Pro: Fields are intuitive, reflect standard office application use.
They’re easy to adapt, add, remove, and customize.
Con: Rarely, if ever, used completely and correctly. Significant
contributor to poor data integrity.

Structural
Arrangement

(Configuration)

Pro: Configuration Management of requirements supports
reuse, product line engineering, dataset integrity, context
delivery.
Con: Requires RM-specific tool capabilities, user learning.

Completeness through Context, or Metadata?
How to best specify information for a requirement or set of
requirements? Is it better to use fields or other per-requirement
attributes, or to arrange content structurally in a database or series of
documents?

64

Example (textual): Invoice Creation

64

Name: InvoiceCreation

Requirement: When an _order_ is shipped and _orderTerms_ are “Credit”, the system
shall create an _invoice_.

Rationale: Task automation decreases error rate, reduces effort per order. Meets
corporate business principle for accounts receivable.

Priority: High.

Status: Committed

Contact: Hugh P. Essen

Source: I. Send, Shipping

Created by: Julie English

Version: 1.1, Modified Date: 20 Oct 20

65

Exercise 2
Writing Functional Requirements and Constraints

65

Instructions:

Choose one of the two items below – OR an item of your choice! - and write 5-10
functional requirements and constraints that it must satisfy using Constrained
Natural Language (including each EARS pattern). Feel free to collaborate on this
with your peers!

Smart phone Drone

66

Functional requirements and constraints are measured on a yes/no (Boolean)
basis.

EARS is strongly recommended as the default method for capturing natural
language functional requirements,and constraints.

Question ubiquitous (universally stated) requirements; many have latent
triggers or conditions.

Traceability, structural arrangement of requirements, and if needed, additional
fields help ensure requirements satisfy the 10 Attributes of a Good
Requirement. Use the best practice for the tool you are using, and for objectives
you intend to enable (reuse, product line definition, etc.)

Section Summary

67Intel Confidential

Specifying Quality Requirements
“How Well Does the System Do What It Shall Do?”

68

Quality and Performance Requirements (IREB: “Quality Requirements”) are
measured on some interval, such as more versus less, or better versus worse.

Because they are not measured on a yes/no basis like functional requirements
and constraints, Quality Requirements are specified a little differently. The
single imperative statement is supplemented by several keyword statements
as shown on the next slide.

You can think of these new keywords as a more granular way to specify the
requirement itself – functional requirements and constraints are simpler than
quality requirements, and need only the imperative in the Requirement
keyword.

About Quality Requirements

69

Scale The scale of measure used to quantify the requirement

Meter The process, device, or benchmark used to establish
location on a Scale

Minimum The minimum level of quality or performance that is
permitted to avoid failure; worst-possible result that is
still allowed

Target The level at which good success can be claimed

Maximum Upper limit of a stretch goal if everything goes perfectly;
should not be exceeded. (Allocate resources elsewhere if
trend is better than Maximum)

Additional attributes of Quality Requirements

70

Name: Learnable

Requirement: The system shall be easy to learn

Rationale: Learnability issues are among the top 3 complaints from users, and upcoming
hiring makes system learnability critical.

Priority: High

Scale: Average time required for a _novice_ to complete a 1-item order using only the
online help system for assistance.

Meter: Measurements obtained on 100 _novices_ during user interface testing.

Minimum: No more than 7 minutes

Target: No more than 5 minutes

Contact: B. Bedderson

Source: Flo Larner

Defined: _novice: A person with less than 6 months of web application use.

Created By: Julie English, Version: 1.1, Modified Date: 20 Oct 2018

Example Quality Requirement (textual)

71

71

There are three types of scales:

1. Natural: Scales with obvious association to the measured quality

2. Constructed: A scale built to directly measure a quality

3. Proxy: An indirect measure of a quality

Natural Temperature measured in degrees Celsius

Constructed A 7-point scale created to measure environmental impact

Proxy An in-field MTTF goal measured using pre-release reliability
test results

Examples:

Finding Scales for Quality Requirements

72

First, study the scale carefully. If no meter comes to mind:

• Look at references and handbooks for examples for ideas

• Ask others for their experience with similar methods

• Look for examples within test procedures

Once you have a candidate, check to see that:

• The meter is adequate in the eyes of all stakeholders

• There is no less-costly meter available that can do the same job
(or better)

• The meter can be employed before product release or
completion of the deliverable

Finding Meters

Remember: Scale = scale of measure,
Meter = Device or process to measure position on the Scale

73

ID: Environmental Noise

Scale: dBA at 1 meter

Meter: Lab measurements performed according to a <standard environmental
test process>

ID: Software Security

Scale: System resilience under attack

Meter: Time that a system remains accessible via a remote administrator while
experiencing a DDoS attack

ID: System Reliability

Scale: The time at which 10% of the systems have experienced a <failure>

Meter: Highly-Accelerated System Test (HAST) performed on a sample from early
production

Examples of Scales and Meters

74

74

Revisit the requirements you wrote in Exercise 2.

1. Identify at least two quality requirements that can be derived from
the functional requirements previously written by your group.

2. Specify these requirements, using the template on the next slide.

Exercise: Quality Requirements

Smart phone Drone

75

75

Requirement (primary text)
Rationale
Scale
Meter
Minimum
Target
Maximum

76

Section Summary

Quality and performance requirements are measured on some
interval rather than a yes/no basis, so they need additional keywords
and data to be measurable and unambiguous.

Capture quality and performance requirements using the Scale,
Meter, Minimum, Target, Maximum keywords.

77

78Intel Confidential

Beginning Distance Learning Session #3

Systems and Requirements Engineering

Requirements Specification
Distance Learning Session #3 (Verification Overview)
Version 9.2
October 2020

sarah.c.gregory@intel.com

80

Contents

• The Cost of Quality

• Objective Requirements Quality (“Good Requirements”)

• Subjective Requirements Quality (Producer/Consumer
Quality eXchange - PCQX)

This is a VERY HIGH LEVEL overview of Requirements Verification. (full-day class)
Training and experience are needed to be able to successfully verify requirements.

81

Objectives

After completing this session, you should be able to:

• Understand the Cost of Quality

• Use a checklist to assess objective requirements quality

• Describe how requirements producers and consumers
ensure subjective requirements quality

82

Questions to Consider

82

1. What types of specification does your team or group use today
(requirements, stories, use cases, architecture specs, etc.)?

2. How is this information captured, stored, and related?

3. What forms of review is used on the information? What is the
purpose of those reviews? Who decides if the information is “good
enough” to become the plan of record?

4. What is the most significant challenge you face in reviewing
requirements and other product definitional data?

5. What was the quality level of your last program’s requirements?

83

Assessing Requirements Quality

Most teams do not systematically assess the quality of their
requirements deliverables

• Requirements practice maturity is rarely sufficiently mature to understand
the practices needed to evaluate requirements quality

• Requirements quality assessments take time, and require both cultural
and behavioral changes for individuals, teams, and business units

• Failure to systematically perform Requirements (and Systems) Engineering
activities leads to a hidden pile of work that shifts rightward across the
product lifecycle.

• No bright line rule exists to define “how much” Requirements Verification
is needed to ensure product quality, and how to evaluate cost versus
benefit of this work. Analyze risk vs. benefit carefully.

84

The Cost of Quality

Cost of Conformance

• Reviews

• Inspections

• Training

• Testing

Cost of Non-Conformance

• Rework and Delays

• Customer support

• Product updates

• Recalls

The cost of quality is often divided into two categories:
Conformance and Non-Conformance

Spending in these areas tends to be inversely related, but what’s the most efficient balance?

84

85

The Cost of Quality | What Raytheon* Achieved

*Third-party brands and names are property of their respective owners

Over a seven-year program:

• Rework dropped from 41% to
under 10% of budget

• Productivity increased by a factor of
2.8

• Budget/schedule variance reduced
to +/- 3%

• Total cost of quality reduced from
61% to under 30%

Lessons:

• Large-scale improvement is possible, but it takes time

• Even so, early improvement is significant (~50% reduction in 2 years)

85

86

Requirements Review Challenges
Requirements reviews are often challenging because:

• Many authors are unable to separate themselves from their work product

• Monolithic documents create confusion about who needs to review what
content, and which feedback matters

• Potential reviewers are often unable to dedicate the time needed to do
the review correctly

• Reviews are often a step scheduled just before a milestone, with time and
resource limitations, and no prescribed method or process

• Many reviews are conducted via email with limited participation and
follow-up, and no record of comments, changes, and final content.

Requirements Verification – a separate RE activity. Additional training is available and necessary.

87

Objective Requirements Quality Assessment
Shared criteria build a shared understanding of “goodness”

• The Good Requirements Checklist provides a objective guidelines for authors
and reviewers to follow

• Defect Prevention: Authors write requirements with the principles in
mind

• Defect Removal: Reviewers use the checklist to identify rule violations

• Techniques such as formal inspection, or Specification Quality Control (SQC)
add more rigor and discipline to quality assessment (Gilb, 2006.)

• Metrics can track a team or organization’s requirements maturity and
continuous improvement

• Warning: A perfectly-crafted requirement may nevertheless be incorrect,
inaccurate, or otherwise not appropriate for a specification

88

What’s Wrong With My Requirements?

System/Heat sink fans must maintain adequate airflow for CPU and
system cooling while providing the quietest operation possible.

See anything wrong?...

89

A Lot is Wrong, Actually…

System/Heat sink fans must maintain adequate airflow
for CPU and system cooling while providing the
quietest operation possible.

Design
Multiple
requirements

Multiple
requirements

Weak
wordsUnder-

specification

Not verifiable as written

Not
traceable

And, or? Design

90

Objective Requirements Quality Criteria
• Complete: A requirement is complete when it contains

sufficient detail for those that use it to guide their work

• Correct: A requirement is correct when it is error-free

• Concise: A requirement is concise when it contains just
the necessary information, expressed in as few words as
possible

• Feasible: A requirement is feasible if there is at least one
design and implementation for it

• Necessary: A Requirement is necessary when it:

• Is included to be market competitive

• Can be traced to a stakeholder need

• Establishes a new product differentiator or usage
model

• Is dictated by business strategy, roadmaps, or
sustainability

• Prioritized: A requirement is prioritized when
it is ranked or ordered according to its
importance

• Unambiguous: A requirement is
unambiguous when it possesses a single
interpretation

• Verifiable: A requirement is verifiable if it can
be proved that the requirement was
correctly implemented

• Consistent: A requirement is consistent
when it does not conflict with any other
requirements at any level

• Traceable: A requirement is traceable if it is
uniquely and persistently identified

Basic Practice: Count rules that are violated. Intermediate Practice: Count every individual issue.

91

Subjective Requirements Quality
Requirements completeness is assessed by the consumers of the
work products - not by the authors!

• It is impossible to automatically or objectively determine “doneness”

• Requirements must be sufficient to drive work forward at an acceptable
level of risk for any given project or program.

• Subjective requirements quality requires recognition of the
interdependence between the producers and the consumers of data.

• Subjective requirements quality assessments implicate both good
authoring practices and strong requirements management.

• Metrics can measure and guide continuous improvement efforts with
subjective Verification practices as well.

92

Producer-Consumer Quality Exchange (PCQX)

Review
Upstream
Context &
Content

Synthesize
Draft &

Update your
Context &
Content

Define
Consumers

Complete
Informal
Concept
Review(s)

Disposition
Feedback

Detailed
Continuous

Informal Feedback
Cycle

Artifact Level
PCQ

• What is the source content? Who
produces it, where, and in what format?

• Preconditions: Who produces the data
that I consumed to produce my
requirements? Who consumes what I
produce to do their job?

• Postconditions: What did I produce?
Who reviewed or approved it? Did all
named reviewers complete a review?
Was any feedback dispositioned? Was a
final version of my content Approved?

• Recorded: Reviewers and Approvers are
accountable to the Producers and
program for their work.

Informal feedback early in requirements
generation increases the likelihood of a better
formal review and approval process later.

93

Techniques for Requirements Verification
Both objective and subjective requirements assessment can lead to
improved requirements quality

• Many review techniques can be employed for either Objective or Subjective
Requirements Verification.

• Which technique(s) to choose depends on factors including team maturity,
data maturity, and risk tolerance for errors or lack of shared interpretation

• Almost any review practice – checklist or PCQX – is better than NO
requirements review

• “Please review this and send me your feedback” – with no required reviews,
no accountability for reviewers, no record of disposition of feedback, and no
approval – can be worse than no review at all!

94

Review Methods: Pros and Cons
Pros Cons

Informal
Review

• Flexible

• Least threatening

• Finds fewer defects than
other types

• Variable, inconsistent results

Walkthrough • More systematic than
reviews

• Identifies defects
reviews miss

• May lack follow-up

• More time intensive and
inconvenient than reviews

Inspection • Most defects located

• Controlled, repeatable

• Industry proven
practice

• Intimidating to some

• Requires training

• Can be too much effort
without sampling

94

95

Inappropriate Data Use

There is one simple way to make any Requirements Verification
process fail: Use the data for performance appraisal

When quality improvement data is misused in this way, teams will work around the
review system by reporting issues privately to authors, or skipping reviews completely

Once someone loses trust in the peer review process, it is extremely hard to restore

Use of peer review data for performance appraisal is unacceptable –
find other ways to measure individual performance

96Intel Confidential

Beginning Distance Learning Session #4

Systems and Requirements Engineering

Requirements Engineering
Distance Learning Session #4 – Requirements Management Overview
Version 9.2
October 2020

sarah.c.gregory@intel.com

98

98

Contents

What is Requirements Management?

Requirements Management

Baselines and Configuration Management

A Requirements Change Management Process

Tools for Managing Requirements

Sources for Further Information

This is NOT the complete RM training, but an overview of the Activity.
Complete RM training is ~1-2 days long, hands-on with requirements.

99

99

Objectives

• Define and understand requirements management and
requirements baselines

• Understand the basics of configuration management and how
requirements management fits within the process

• Describe the essential capabilities of RM tools

• Know where to find more information on the topics presented

At the end of this session, you should be able to:

100

Coming to Terms

100

Systems Engineering

Requirements Engineering

Requirements
Management

- Maintaining the integrity
and accuracy of the

requirements

Gathering
Requirements
from Stakeholders

Assessing,
negotiating and
ensuring correctness
of requirements

Creating the written
requirements

Assessing
requirements for
quality

101

101

What is Requirements Management?
Requirements management encompasses those tasks that record
and maintain the evolving requirements and associated context
and historical information from the requirements engineering
activities. Requirements management also establishes procedures
for defining, controlling and publishing the baseline requirements
for all levels of the system-of-interest.
ISO/IEC/IEEE 29148-2018

Requirements Management critically depends on the practice of
Configuration Management (CM) and helps manage product scope

102

102

Problem Statement
Unmanaged and poorly managed changes to product requirements
lead to mistakes, unnecessary features, and expensive rework.

▪ In your experience, how much scope creep occurs on a typical
project? What was the effect?

▪ In your experience, what is the most common source of changes to
requirements? Could the changes be prevented?

▪ What are the rate and volume with which Requirements Change
Requests (RCRs) come in post-PRQ in your organization?

103

103

Existing

Errors
Conflicts with

Reality

Changing

Priorities

Changing

Needs

Sources of Requirements Change

Product Definitional Data

104

104

Common Secondary Causes of Changes

•Requirements were not written well (or at all)

•Customer needs or input were not adequately determined
when defining requirements

•Cost and impact of requirements change on product items
and project activities were not understood

•Changes to requirements were not communicated to all
stakeholders

•No requirements baseline, or a “baseline” was declared but
left unmanaged and uncontrolled

No Baseline = No Requirements Management

105

105

What is a Baseline?

A formally reviewed and approved version of a work
product that serves as the basis for future development and
can be modified only through a defined, controlled process

•Baselines can be established for all product definitional data

•Baselines MUST be established to define POR for a PLC milestone

•The Producer/Consumer Quality Exchange (PCQX) process is
designed to coordinate steps leading to and including the formal
review and approval step that establishes a baseline.

•The version of data that is baselined is established through a
Configuration Management process

• Agile programs still follow similar practices, but they’re handled differently

106

106

What is Configuration Management?

The process of identifying and defining the items in the system,
controlling the change of these items throughout their lifecycle,
recording and reporting the status of items and change requests,
and verifying the completeness and correctness of items. (IEEE
828:2012)

The discipline of identifying the configuration of a system –
hardware, software, or process - at discrete points in time with the
purpose of systematically controlling changes to the
configuration and maintaining the integrity and traceability of the
configuration throughout the system lifecycle (Thayer and Thayer)

107

107

Configuration Management Activities

Defect

Management

Configuration

Management

Baseline

Management

Naming &

Numbering

Change

Control

Source,

Binary, and

Document

Control

Change

History &

Traceability

Build &

Release

Control

Configuration

Identification

Configuration Management is a CRITICAL capability of Requirements Management.
No CM = No RM.

108

Configuration Management for Requirements

Management Functions
controlling the process

Engineering Functions

managing the requirements

Communication Functions

capturing and distributing information

109

109

Configuration Management for Requirements

•Managing requirements defects and change requests

•Tracking and controlling revisions to requirements

•Managing and controlling the requirements baseline

Managing the Requirements

110

Configuration Management for Requirements

•Policy enforcement

•Timing and sequence of procedures and
tasks

•Assessment of data workstates at
milestones

•Identification of roles, responsibilities,
and owners

•Audits of procedural effectiveness and
compliance

Controlling the Process

111

111

Configuration Management for Requirements

•Baseline composition and distribution

•Change history

•Platform and other requirements dependencies

•Notification of change and requests for change

•Requirements metrics

Capturing and Distributing Information

11
2Intel Confidential

Requirements Traceability & Tools
Essential Knowledge

113

113

What is Traceability?

The ability to describe and follow the life of a requirement, in
multiple directions, and understand its relationship to other
product definitional data – including to related products in a
product line.

Requirements can be traced to and from:

•Customer asks and value propositions

•Usage components, including scenarios and use cases

•Architecture, design, and implementation

•Test cases, documentation, change requests

•BOM data, IP, customer feedback

114

114

Why Trace Requirements?

•Enables verification that all necessary features are
contained in the requirements

•Makes the relationship between customer asks, value
propositions, product features, use cases, requirements,
design, and other execution data visible

•Helps ensure full test coverage of product features

•Helps guarantee that no unnecessary or conflicting features
are built

•Eases the requirements change process by:

✓Identifying associated items to be changed

✓Simplifying impact assessment

115

Traceability and Change Management
Traceability makes these questions easier to answer as part
of the change management process:

•What are the potential positive and negative consequences for a
change?

•Which customer asks are implicated by a change?

•What use cases, design documents, test cases, and other project
items would be affected by the change?

•How much rework would need to be done, and where?

•Is the change justified?

Traceability also enables accurate tracking and assessment of change completion

116

116

Requirements Engineering Tools

Requirements Engineering Tools:
• Are necessary to enable traceability in the complex Intel context

• Coordinate change and version control activities

• Capture requirements attributes in a database

• Enable re-use of requirements

• Help control and distribute the requirements baseline(s)

• Assist with impact analysis (especially through traceability)

117

117

Requirements Engineering Tools
Common Tool Features

All standards-aligned and functional RM tools MUST have:

•Good to excellent functionality for requirements tracing, including across variants

•Configuration Management capabilities that enable versioning of sets of data

•The capability to create an immutable version of a collection of requirements
(baseline)

•The ability to assemble different versions of baselines to create variants of a
product across a product line.

•Interfaces that enable integration with other engineering tools

Support varies for some functions:

•Full integration of RM, PLM, and Agile capabilities (including SAFe/Agile@Scale)

•Modular and granular access control, including incorporation of “roomed” data

•Model-Based Systems Engineering

118

Requirements Engineering Tools

Harsh Realities

Requirements traceability is impossible without a tool or integrated set
of tools that possess the needed capabilities

RM tools are essential when used correctly, but can require significant
training and effort (RE is an engineering discipline!)

Great tool + poor process = certain failure

Inadequate or highly-tailored solutions invariably result in degradation
of practice, sometimes to the point that RM is no longer practiced at all!

No tool is a panacea; tools make managing requirements easier, but not
necessarily easy

11
9Intel Confidential

Conclusion of Distance Learning Course

120

Sources for More Information (Part One)
Systems Thinking Made Simple: New Hope for Solving Wicked Problems,
Derek Cabrera, Laura Cabrera, Independently published, 2016.

Systems Engineering: Coping with Complexity, Richard Stevens et al,
Prentice Hall 1998

Systems Engineering: A 21st Century Systems Methodology, Derek Hitchins,

Wiley 2007

Competitive Engineering, Tom Gilb, Elsevier 2005 (free digital copy available to

Intel personnel by request and Tom’s courtesy – send email to Sarah Gregory.)

Shu-Ha-Ri for RE? An Agile Approach to Requirements Engineering

Practitioner Maturity, Sarah Gregory, IEEE Software, 12/2019.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8938120

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8938120

121

Acknowledgements

The Requirements Engineering curriculum at Intel Corporation was created by

Erik Simmons (1999-2016), work that is still foundational to the courses.

RE@Intel has been housed – formally or informally – in various locations

across the company. Present cross-Intel work is supported by courtesy of the

Intel Internet of Things Group (IOTG).

Our work evolves steadily through lessons learned with hands-on

engagement with Intel product and platform development teams.

We acknowledge with deep gratitude the work of the International

Requirements Engineering community, especially the International IEEE RE

Conference series, and the REFSQ conference community.

12
2

